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For each function that is one-to-one, write an equation for its inverse function. Give the

. domain and range of both f and f 7. If the function is not one-to-one, say so.
15. f(x)=3x—6 16. f(x) =2(x+1)3
2x—1
17. f(x) = 32 18. f(x) ==
5 — 3%
19. f(x)="V5—x* 20. f(x)=Vx2-9, x=3
Write an equivalent statement in logarithmic form.
1 —3
21. (B) = 1000 2. ab=c 23. (V3)'=09
1
24, 4732 = 3 25, 2* =32 26. 2743 = 81

Solve each equation.

1
27. 3x = Tlow 6 28. x = logo 0.001 29. x = loge ik
1

30. log,5= 5 31. logp0.01 =x 32. log,3=—1
|

33. log, 1=0 34. x=log,\V/8 35. log, /5 = 3
25
‘ 36. 10g1/3 x=-5 37. logm(logz 210) =X 38. x= 10g4/5 E

v 1 i
39. 2x — 1 = logg 6* 40. x = ,[logip T 41. 2* =log, 16
1 x+1

42, logzx = —2 43. <§) =0 44, 526 =253

Evaluating Logarithms and the Change-of-Base

Theorem
§*Commen Logarithus ~ Common Logarlthms " Two of the most important bases for logarithms are 10
and e. Base 10 logarithms are called common logarithms. The common loga-
rithm of x is written log x, where the base is understood to be 10.

m Applications and
Models with Common
Logarithms

m Natural Logarithms
1 Applications and

Models with Natural Common Logarithm
Logarithms
Logarithms with Other For all positive numbers x,

Bases

. log x = logjp x.

A calculator with a log key can be used to find the base 10 logarithm of any
positive number.
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Evaluating Common Logarithms with a Calculator

Use a calculator to find the values of

log 1000, log 142, and log 0.005832.

SOL Figure 33 shows that the exact value of 103t 166E
log 1000 is 3 (because 10° = 1000), and that lage 1-42{52255344
log 142 =~ 2.152288344 1oat. GBEES2)

~3. 234182485
and log 0.005832 ~ —2.234182485.

Most common logarithms that appear in calculations
are approximations, as seen in the second and third
displays.

Figure 33

Now Try Exercises 11, 15, and 17.

Figure 34 reinforces the concept presented in the previous section: log x is
the exponent to which 10 must be raised to obtain x.

Base a logarithms of numbers between 0 and 1, where a > 1,
are always negative, as suggested by the graphs in Section 4.3.

Applircétiorns"aml Models with Common ngaiiihms In chemistry, the pH of
a solution is defined as

pH = —log[H;0%], ‘

where [H;07" ] is the hydronium ion concentration in moles* per liter. The pH

-value is a measure of the acidity or alkalinity of a solution. Pure water has pH 7.0,

substances with pH values greater than 7.0 are alkaline, and substances with pH values
less than 7.0 are acidic. It is customary to round pH values to the nearest tenth.

1 7 14

Acidic Neutral "~ Alkaline

: X Finding pH
(a) Find the pH of a solution with [H;0%] = 2.5 X 1074,

(b) Find the hydronium ion concentration of a solution with pH = 7.1.

(@) pH = —log[H;0"]

= —log(2.5 X 107%) Substitute.

—(log 2.5 + log 10™*)  Product property (Section 4.3)

= —(0.3979 — 4) log 10* = —4 (Section 4.3)
= —0.3979 + 4 Distributive property (Section R.2)
pH = 3.6 Add.

*A mole is the amount of a substance that contains the same number of molecules as the number of atoms
in exactly 12 grams of carbon-12.
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(b) pH = —log[H;0"]
7.1 = —log[H;0%] Substitute.
—7.1 = log[H3;07] Multiply by —1. (Section 1.1)
[H;0"] = 1071 Write in exponential form. (Section 4.3)
[H;0"]=7.9X 10%  Evaluate 10! with a calculator.
¥ Now Try Exercises 29 and 33.
In the fburth linenofi the éorlu/triorn 1n Exarﬁpie 2(3),“\;16 Vl;sewthe
equality symbol, =, rather than the approximate equality symbol, =, when

replacing log 2.5 with 0.3979. This is often done for convenience, despite
the fact that most logarithms used in applications are indeed approximations.

Using pH in an Application

Wetlands are classified as bogs, fens, marshes, and swamps based on pH values.
A pH value between 6.0 and 7.5 indicates that the wetland is a “rich fen.” When
the pH is between 3.0 and 6.0, it is a “poor fen,” and if the pH falls to 3.0 or less,
the wetland is a “bog.” (Source: R. Mohlenbrock, “Summerby Swamp, Michigan,”
Natural History.)

Suppose that the hydronium ion concentration of a sample of water from a
wetland is 6.3 X 1073. How would this wetland be classified?

pH = —log [H3O+] Definition of pH
= —log(6.3 X 1079) Substitute.
= —(log 6.3 + log 1073)  Product property
= —log 6.3 — (—5) Distributive property; log 10" = n
=—log63+5 Definition of subtraction
pH = 4.2 Use a calculator.

Since the pH is between 3.0 and 6.0, the wetland is a poor fen.

Now Try Exercise 37.

PLE Measuring the Loudness of Sound

The loudness of sounds is measured in decibels. We first assign an intensity of
Iy to a very faint threshold sound. If a particular sound has intensity I, then the
decibel rating d of this louder sound is given by the following formula.

d=101 L
ogIO

Find the decibel rating d of a sound with intensity 10,0001.
10,0001,

d=101og —r Let I = 10,0001.
0

=1010og 10,000 =1
=10(4) log 10,000 = log 10* = 4 (Section 4.3)
=40 Multiply.

The sound has a decibel rating of 40.

Now Try Exercise 63.
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LOOKING AHEAD TO CALCULUS

The natural logarithmic function

f(x) = In x and the reciprocal func-
tion g(x) =1 have an important
relationship in calculus. The derivative
of the natural logarithmic function is
the reciprocal function. Using Leibniz
notation (named after one of the co-
inventors of calculus), we write this

factas L(lnx) = 1.

Figure 35
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Natural Logarithms In Section 4.2, we introduced the irrational number e.
In most practical applications of logarithms, e is used as base. Logarithms with
base e are called natural logarithms, since they occur in the life sciences and
economics in natural situations that involve growth and decay. The base e loga-
rithm of x is written In x (read “‘el-en x”°). The expression In x represents the
exponent to which e must be raised to obtain x.

Natural Logarithm

For all positive numbers x,

Inx = log, x.

A graph of the natural logarithmic function f(x) = In x is given in Figure 35.

Evaluating Natural Logarithms with a Calculator
Use a calculator to find the values of

Ine® Inl142, and In0.005832.

- Figure 36 shows that the exact value of  [{7z%1
In e’ is 3, and that 3
ol 14&? :ICFSBE?EISEI
In 142 = 4.955827058 lnC.EIB-S:‘EEED
and 1n 0.005832 ~ —5.144395284. "3. 144393234

Figure 36
” Now Try Exercises 45, 49, and 51.

Figure 37 illustrates that In x is the exponent to which e must be raised to
obtain x.

Abprlriréatic/ms and Models with Natural Logarithms
plications of natural logarithms.

We now consider two ap-

Measuring the Age of Rocks

Geologists sometimes measure the age of rocks by using “atomic clocks.” By
measuring the amounts of potassium-40 and argon-40 in a rock, it is possible to
find the age # of the specimen in years with the formula

In(1+8.33(%))

t=(1.26 X 109 =
n

s

where A and K are the numbers of atoms of argon-40 and potassium-40, respec-
tively, in the specimen.

(a) How old is a rock in which A = 0 and K > 0?

(b) The ratio IA? for a sample of granite from New Hampshire is 0.212. How old
is the sample?
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(a) If A =0, then }% = 0 and the equation is as follows.

In(1+833(%))

t= (1.26 X 109) n2 Given formula
(1.26 x 10%) . 4 —, o1 +0) =1l
= A — £=0, soIn(1 + =
2 X o In( n
= (1.26 X 10°)(0) In1=0
t=0

The rock is new (0 yr old).
(b) Since 4 = 0.212, we have the following.
In(1 + 8.33(0.212))

(1.26 X 109) In 2 Substitute.

t

t= 1.85 X 10° Use a calculator.
The granite is about 1.85 billion yr old.

Now Try Exercise 77.

Modeling Global Temperature Increase

Carbon dioxide in the atmosphere traps heat from the sun. The additional solar
radiation trapped by carbon dioxide is called radiative forcing. It is measured
in watts per square meter (w/m?). In 1896 the Swedish scientist Svante Arrhenius
modeled radiative forcing R caused by additional atmospheric carbon dioxide,
using the logarithmic equation

R=kIn £,
Co
where Cy is the preindustrial amount of carbon dioxide, C is the current car-
bon dioxide level, and k is a constant. Arrhenius determined that 10 = k£ = 16
when C = 2Cy. (Source: Clime, W., The Economics of Global Warming, Insti-
tute for International Economics, Washington, D.C.)

(a) Let C = 2C,. Is the relationship between R and k linear or logarithmic?

(b) The average global temperature increase 7 (in °F) is given by T(R) = 1.03R.
Write T as a function of k.

(a) If C = 2Cy, then C% =2, 50 R = kln 2 is a linear relation, because In 2 is a
constant.

(b) T(R) = 1.03R

£ o : —
T(k) = 1.03k In Use the given expression for R.
Co

Now Try Exercise 75.

Logarithms with Other Bases We can use a calculator to find the values of
either natural logarithms (base ¢) or common logarithms (base 10). However,
sometimes we must use logarithms with other bases. The change-of-base theorem
can be used to convert logarithms from one base to another.
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LOOKING AHEAD TO CALCULUS

In calculus, natural logarithms are
more convenient to work with than
logarithms with other bases. The
change-of-base theorem enables us to
convert any logarithmic function to a
natural logarithmic function.

logdldaslogeg)
(5

1.7
Int.1241n02s
. “3. 3219

The screen shows how the
result of Example 8(a) can be
found using common loga-
rithms, and how the result of
Example 8(b) can be found
using natural logarithms. The
results are the same as those
in Example 8.

Change-of-Base Theorem

For any positive real numbers x, a, and b, where a # 1 and b # 1, the .
following holds.

log;, x

log,x =
log, a
Proof Let y = log, x.
ad=x Change to exponential form.
log, a” =log, x Take the base b logarithm on each side.

vlog, a =1log,x Power property (Section 4.3)

log, x
y= Divide each side by log, a.
IOgb a
log, x
log, x = Substitute log, x for y.
log;, a

Any positive number other than 1 can be used for base b in the change-of-
base theorem, but usually the only practical bases are e and 10 since calculators
give logarithms for these two bases.

P For example, with the change-of-base theorem, we can now graph the
. i 1 .
equation y = log, x by directing the calculator to graph y = %, or, equiva-

lently, y = iﬂ% = .

Using the Change-of-Base Theorem

Use the change-of-base theorem to find an approximation to four decimal places
for each logarithm.

(a) logs 17 (b) log, 0.1

(a) We will arbitrarily use natural logarithms. There is no need to )

actually write this step.
~Inl17 28332
In5 1.6094

logs 17 ~ 1.7604

(b) Here, we use common logarithms.

log 0.1

log, 0.1 = —— = —3.3219
fea log 2

Now Try Exercises 79 and 81.

NOTE  In Example 8, logarithms evaluated in the intermediate steps, such
as In 17 and In 5, were shown to four decimal places. However, the final
answers were obtained without rounding these intermediate values, using all the
digits obtained with the calculator. In general, it is best to wait until the final
step to round off the answer; otherwise, a build-up of round-off errors may
cause the final answer to have an incorrect digit in the final decimal place.
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\‘ Modeling Diversity of Species

One measure of the diversity of the species in an ecological community is mod-
eled by the formula

H=—[Plog, P, + P,log, P, + - - - + P,log, P, |,

where P, P,, ..., P, are the proportions of a sample that belong to each of n
species found in the sample. (Source: Ludwig, J., and J. Reynolds, Statistical
Ecology: A Primer on Methods and Computing, New York, Wiley.)

Find the measure of diversity in a community with two species where there
are 90 of one species and 10 of the other.

SO N Since there are 100 members in the community, P; = % = 0.9 and
10 _

P, =155 = 0.1, so

H=—-[0910g;0.9 + 0.11log, 0.1 ].  Substitute for P; and P,.

In Example 8(b), we found that log, 0.1 = —3.32. Now we find log, 0.9.

log 0.9
log 2

log, 0.9 =

= —(.152 Change-of-base theorem

Therefore,
H=—[0910g,0.9 + 0.1 log, 0.1]
H =~ —[0.9(—0.152) + 0.1(—3.32)] Substitute approximate values.
H ~ 0.469. Simplify.

Verify that H = 0.971 if there are 60 of one species and 40 of the other.
As the proportions of n species get closer to % each, the measure of diversity

increases to a maximum of log, 7.

¢ Now Try Exercise 73.

F5 At the end of Section 4.2, we saw that graphing calculators are capable of
fitting exponential curves to data that suggest such behavior. The same is true for
logarithmic curves. For example, during the early 2000s on one particular day,
interest rates for various U.S. Treasury Securities were as shown in the table.

Time | 3-mo 6-mo 2-yr 5-yr 10-yr | 30-yr

Yield | 0.83% | 0.91% | 1.35% | 2.46% | 3.54% | 4.58%

Source: U.S. Treasury.

Figure 38 shows how a calculator gives the best-fitting natural logarithmic curve
for the data, as well as the data points and the graph of this curve.

5
(e o
u=gtbhlhnx —
a=1.479ZB55E 1 s
b=, 2839732872 f{
-5 35
=9

Figure 38 ]
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‘ Exercises

Concept Check Answer each of the following.

1. For the exponential function f(x) = a*, where a > 1, is the function increasing or
decreasing over its entire domain?

2. For the logarithmic function g(x) = log, x, where a > 1, is the function increasing
or decreasing over its entire domain?

3. If f(x) = 5%, what is the rule for f ~'(x)?

4. What is the name given to the exponent to which 4 must be raised to obtain 117

w

. A base e logarithm is called a(n) ____ logarithm, and a base 10 logarithm is
calleda(n) — logarithm.

. How is logz 12 written in terms of natural logarithms?
. Why is log, 0 undefined?

- Between what two consecutive integers must log, 12 lie?

o 0 N &

- The graph of y = log x shows a point on the graph. Write the logarithmic equation
associated with that point.

y

(8,0.90308999)

T T
of 4 s
-1¥ y=logx

10. The graph of y = Inx shows a point on the graph. Write the logarithmic equation
associated with that point.

Find each value. If applicable, give an approximation to four decimal places. See

Example 1.

11. log 102 12. log 107 13. log 0.1 14. log 0.01
15. log 63 16. log 94 17. log 0.0022 18. log 0.0055
19. log(387 X 23)  20. log(296 X 12)  21. log<%> 22, log(%>
23. log 387 + log 23 24. log 296 + log 12

25. log 518 — log 342 26. log 643 — log 287

@ 27. Explain why the result in Exercise 23 is the same as that in Exercise 19.

28. Explain why the result in Exercise 25 is the same as that in Exercise 21.
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For each substance, find the pH from the given hydronium ion concentration. See

. Example 2(a).
29. grapefruit, 6.3 X 107 30. limes, 1.6 X 1072
31. crackers, 3.9 X 107° 32. sodium hydroxide (Iye), 3.2 X 10714

Find the [H3O" ] for each substance with the given pH. See Example 2(b).
33. soda pop, 2.7 34. wine, 3.4
35. beer, 4.8 36. drinking water, 6.5

In Exercises 37—42, suppose that water from a wetland area is sampled and found to
have the given hydronium ion concentration. Determine whether the wetland is a rich
fen, a poor fen, or a bog. See Example 3.

37. 2.49 X 1075 38. 6.22 X 1073 39. 2.49 X 1072
40. 3.14 X 1072 41. 2.49 X 1077 42. 5.86 X 1077

43. Use your calculator to find an approximation for each logarithm.
(a) log398.4 (b) log 39.84 (c) log3.984
(d) From your answers to parts (a)—(c), make a conjecture concerning the decimal
values in the approximations of common logarithms of numbers greater than 1
that have the same digits.

@ 44. Given that log 25 = 1.3979, log 250 = 2.3979, and log 2500 =~ 3.3979, make
a conjecture for an approximation of log 25,000. Then explain why this pattern

continues.
‘ Find each value. If applicable, give an approximation to four decimal places. See
Example 5.
1
45. Ine' 46. In e>* 47. ln(j)
e
1
48. 1n<7> 49. 1n 28 50. In 39
e
51. 1n 0.00013 52. 1n 0.0077 53. In(27 X 943)
98 84
54. In(33 X 568) 55. ]n<—> 56. ln(—>
13 17
57. In 27 + 1n 943 58. In 33 + In 568
59. In98 —1In 13 60. In 84 —In 17

@ 61. Explain why the result in Exercise 57 is the same as that in Exercise 53.

@ 62. Explain why the result in Exercise 59 is the same as that in Exercise 55.

Solve each application of logarithms. See Examples 4, 6, 7, and 9.

63. Decibel Levels Find the decibel ratings of sounds having the following intensities.

(a) 1001, (b) 1000I, (¢) 100,0001, (d) 1,000,0001,
(e) If the intensity of a sound is doubled, by how much is the decibel rating
increased?

64. Decibel Levels Find the decibel ratings of the following sounds, having intensities
' as given. Round each answer to the nearest whole number.
(a) whisper, 1151, (b) busy street, 9,500,0001
(¢) heavy truck, 20 m away, 1,200,000,0001y
(d) rock music, 895,000,000,0001,
(e) jetliner at takeoff, 109,000,000,000,0001,
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65.

66.

67.

68.

69.

70.

Earthquake Intensity The magnitude of an earthquake, measured on the Richter
scale, is logo é where I is the amplitude registered on a seismograph 100 km from
the epicenter of the earthquake, and I is the amplitude of an earthquake of a certain
(small) size. Find the Richter scale ratings for earthquakes having the following
amplitudes.

(a) 10001, (b) 1,000,0001, (c) 100,000,0001,

Earthquake Intensity On December 26, 2004, an earthquake struck in the Indian
Ocean with a magnitude of 9.1 on the Richter scale. The resulting tsunami killed
an estimated 229,900 people in several countries. Express this reading in terms
of I().

Earthquake Intensity On February 27, 2010, a massive earthquake struck Chile
with a magnitude of 8.8 on the Richter scale. Express this reading in terms of I

Earthquake Intensity Comparison Compare your answers to Exercises 66 and 67.
How many times greater was the force of the 2004 earthquake than that of the 2010
earthquake?

(Modeling) Bachelor’s Degrees in Psychology The table gives the number of
bachelor’s degrees in psychology (in thousands) earned at U.S. colleges and universities
for selected years from 1980 through 2008. Suppose x represents the number of
years since 1950. Thus, 1980 is represented by 30, 1990 is represented by 40, and
o on.

Degrees Earned
Year (in thousands)
1980 42.1
1990 54.0
2000 74.2
2005 85.6
2007 90.0
2008 92.6

Source: U.S. National Center
for Education Statistics.

The logarithmic function
f(x) =—228.1+78.19Inx

is the best-fitting logarithmic model for the data. Use this function to estimate the
number of bachelor’s degrees in psychology earned in the year 2012. What assump-
tion must we make to estimate the number of degrees in years beyond 20127

(Modeling) Domestic Leisure Travel U.S. Domestic Leisure Travel Volume
The bar graph shows numbers of lei- 1600
sure trips within the United States '
(in millions of person-trips of 50 or
more miles one-way) over the years
2003-2008. The function

1200 |
800 |

f(t) =1393 +69.491Inz, =1, 400 |-+

Person-Trips (in millions)

where ¢ represents the number of years
since 2002 and f(¢) is the number of
person-trips, in millions, approximates
the curve reasonably well.

0
2003 2004 2005 2006 2007 2008
Year

Source: U.S. Travel Association.
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(a) Use the function to approximate the number of person-trips in 2006. How does
this approximation compare to the actual number of 1492 million?

@ (b) Explain why an exponential function would not provide a good model for these

71.

72.

73.

74.

75.

Fi 7.

77.

data.

(Modeling) Diversity of Species The number of species S(n)in a sample is given

by
n
S =al s —
(n) an<1 a)

where n is the number of individuals in the sample, and a is a constant that indicates
the diversity of species in the community. If a = 0.36, find S(n) for each value of n.
(Hint: S(n) must be a whole number.)

(a) 100 (b) 200 (o) 150 (d) 10

(Modeling) Diversity of Species In Exercise 71, find S(n) if a changes to 0.88. Use
the following values of 7.
(a) 50 (b) 100 (c) 250

(Modeling) Diversity of Species Suppose a sample of a small community shows
two species with 50 individuals each. Find the measure of diversity H.

(Modeling) Diversity of Species A virgin forest in northwestern Pennsylvania has
4 species of large trees with the following proportions of each: hemlock, 0.521;
beech, 0.324; birch, 0.081; maple, 0.074. Find the measure of diversity H.

(Modeling) Global Temperature Increase In Example 7, we expressed the average
global temperature increase 7 (in °F) as

C
T(k) = 1.03k In —,
Co

where Cy is the preindustrial amount of carbon dioxide, C is the current carbon
dioxide level, and k is a constant. Arrhenius determined that 10 = k = 16 when
C was double the value Cp. Use T(k) to find the range of the rise in global temper-
ature 7 (rounded to the nearest degree) that Arrhenius predicted. (Source: Clime,
W., The Economics of Global Warming, Institute for International Economics,
Washington, D.C.)

(Modeling) Global Temperature Increase (Refer to Exercise 75.) According to
one study by the IPCC, future increases in average global temperatures (in °F) can
be modeled by

c
T(C) = 6.489 In ——
(©) T

where C is the concentration of atmospheric carbon dioxide (in ppm). C can be mod-
eled by the function

C(x) = 353(1.006)*190,

where x is the year. (Source: International Panel on Climate Change (IPCC).)

(a) Write T as a function of x.

(b) Using a graphing calculator, graph C(x) and 7(x) on the interval [1990, 2275]
using different coordinate axes. Describe the graph of each function. How are C
and T related?

(¢) Approximate the slope of the graph of 7. What does this slope represent?

(d) Use graphing to estimate x and C(x) when T(x) = 10°F.

Age of Rocks Use the formula of Example 6 to estimate the age of a rock sample
having % = 0.103.
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78.

(ﬂi(fdeling) Plaiw.ts“ Distances froml the Sun and Planet D P
Periods of Revolution The table contains the planets’
average distances D from the sun and their periods P Mercury | 0.39 0.24
f Luti d th i ! i

of revolution around the sun in years The d1§tances A 072 0.62
have been normalized so that Earth is one unit away
from the sun. For example, since Jupiter’s distance Earth 1 1
is 5.2, its distance from the sun is 5.2 times farther
than Earth’s.

(a) Using a graphing calculator, make a scatter dia- Jupiter 52 11.9
gram by plotting the pglnt (In D, In P) for each Satnin 954 | 295
planet on the xy-coordinate axes. Do the data
points appear to be linear? Uranus | 19.2 84.0

(b) Determine a linear equation that models the data
points. Graph your line and the data on the same
coordinate axes. Source: Ronan, C., The Natural

(¢) Use this linear model to predict the period History of the Universe,
of Pluto if its distance is 39.5. Compare your ~MacMillan Publishing Co.,
answer to the actual value of 248.5 yr. Newies

Mars 1252 1.89

Neptune | 30.1 164.8

Use the change-of-base theorem to find an approximation to four decimal places for
each logarithm. See Example 8.

79. log, 5 80. log, 9 81. logg 0.59 82. logs 0.71
83. logi; 3 84. logy;2 85. log, e 86. log,\/2
87. log\/ﬁ 12 88. IOg\/B S 89. 10g0_32 5 90. lOgo_gl 8
Let u=1Ina and v = In b. Write each expression in terms of u and v without using the

In function.

o1 m(b*\Va) 92 m 93. ln\/i 94, n(Va - b*)

bZ

Concept Check In Exercises 95-98, use the various properties of exponential and loga-
rithmic functions to evaluate the expressions in parts (a)—(c).

95.
96.
97.
98.

Given g(x) = ¢*, find (@ g(n4) (b) g(In(5?)) (0 g(In(%)).
Given f(x) = 3%, find (a) f(logz2) (b) f(logs(In3)) (c) f(logs(21In 3)).
Given f(x) =Inx, find () f(e?)  (b) f(e™?) (©) f(e*3),
Given f(x) =log,x, find (a) f(27) (b) f(2l0e22) (c) f(22loe2),

Work each problem.

99. Concept Check Which of the following is equivalent to 2 In(3x) for x > 0?
A. In9+1Inx B. In(6x) C.In6+Inx D. In(9x?%)
100. Concept Check Which of the following is equivalent to In(4x) — In(2x) for x > 0?
In(4x)
A. 2Inx B. In(2x) ’ D. In2
In(2x)
101. The function f(x) = In|x| plays a prominent role in calculus. Find its domain, its

102.

range, and the symmetries of its graph.

Consider the function f(x) = logs |x|.
(a) What is the domain of this function?

I (b) Use a graphing calculator to graph f(x) = logs | x| in the window [ —4, 4] by
[—4.4].

(¢) How might one easily misinterpret the domain of the function by merely observing
the calculator graph?




